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Abstract

Existing approaches to potential field based

navigation, such as (Khatib, 1986) and
(Rimon and Koditschek, 1992),  have  tradi-
tionally seen the local minimum problem as the
only significant obstacle. This is because they
have concentrated on the problem of ‘classical’
local minima, characterised by a positive definite
Hessian.
This paper demonstrates, via the notion of ‘saddle
minimum’, that the navigational problems asso-
ciated with local minima can also arise in connec-
tion with points other than classical local minima.
The existing approaches, in concentrating on the
classical definition, do not acknowledge or address
such local minimum problems.

1. Introduction

This paper is aimed at researchers interested in agent
navigation, particularly roboticists who use simulation
to test their techniques, or researchers seeking to re-
apply robotic navigation techniques into virtual world
scenarios such as computer games or computer anima-
tion in films. This paper may be of particular interest
to readers interested in potential field based navigation.
Potential field based navigation (Khatib, 1986) em-
ploys the metaphor of a virtual landscape that an agent
(typically a robot or computer game character) moves
across, when trying to navigate to a goal. Typically, the
landscape is shaped so that the gradient of the landscape
acts like a force pulling the agent towards its goal, while
simultaenously pushing it away from obstacles that lie
between it and the goal. The landscape and its gradient
are usually modelled using mathematical functions.
Like most other potential field based approaches in AI,
this technique is blighted by the Local Minimum Prob-
lem (LMP), particularly when using steepest gradient
descent to direct travel across the potential field surface.

“...Dealing with local minima is the major issue
that one has to face in designing a planner based
on this approach.” (Latombe, 1991).

Local minima exist when the steepest gradient at all
points on the potential field surrounding some point X
directs the agent back towards X, and X is not the global
minimum position representing the goal of the naviga-
tion. These local minima have the effect of causing nav-
igation to fail, as the steepest descent heuristic will not
produce any further progress towards the goal when a
local minimum is encountered.

Some techniques (Latombe, 1991), try to overcome the
LMP by avoiding using the steepest gradient descent
heuristic directly. Instead, another technique replaces
steepest gradient descent behaviour when local minima
are discovered. This strategy involves identifying when
the agent’s current location within the potential field is
at, or is near a local minimum (either by using math-
ematical analysis of the surface properties such as the
Hessian, or by using heuristics to guess when a minimum
might have been reached). When a minimum is identi-
fied, backtracking or random motion can be employed
instead of steepest gradient descent in order to try and
escape the minimum, allowing navigation to continue.

Another  family  of navigation  approaches
(Rimon and Koditschek, 1992) (Connolly et al., 1990)
(Connolly and Grupen, 1992) (Kim and Khosla, 1992)
(Latombe, 1991) seek to overcome the LMP by attempt-
ing to construct potential fields that simply do not have
local minima in the first place. ‘Harmonic Potential
Fields’ are the best known example of this technique.
The navigational potential field is defined to be created
solely from harmonic functions (those functions con-
taining only saddle points as their stationary points,
and not local minima) representing goals and obstacles.
The resulting navigational field also lacks local minima.
Steepest gradient descent can then be used on such a
surface, as there are no longer any local minima on the
surface to cause navigation to fail.
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Figure 1: Saddle Point of f(z,y) = 2*> — y*>. The subspace
along which travel can be trapped in a local minimum is
marked.

“We use harmonic functions which completely
eliminate local minima even for a cluttered
environment.” (Kim and Khosla, 1992).

An excellent source of information on all types of ap-
proach taken to overcome the LMP can be found in
(Latombe, 1991).

This paper will illustrate a type of ‘hidden local min-
imum’ that may cause problems for both strategies for
dealing with the LMP, under certain conditions.

2. The Saddle Minimum Problem

The techniques of ‘local minimum detection’ and ‘local-
minimum-free potential fields’ have been applied in both
real world and simulated robotic navigation experiments.
However, a subtle flaw can be exhibited when the nav-
igation heuristics are employed in experimental simula-
tion, or when they are re-applied to the problem domain
of virtual-world navigation (i.e. computer games, com-
puter animated films). This flaw is the saddle minimum
problem.

Consider the saddle point illustrated in Figure 1. The
dark line down the ‘center’ of Figure 1, marks a 1-
dimensional affine subspace within which the gradient
never points outside the subspace, at all points within
the subspace. Consequently an agent undergoing gra-
dient descent will experience problems in this ‘slice’ of
the field if its behaviour satisfies both of the following
properties.

A The agent starts at, or has reached a position pre-
cisely in this problematic reduced-dimensionality
subspace (being nearby is insufficient).

B The agent is able to evaluate and follow the gradient
perfectly, e.g. without movement errors or miscalcu-
lation of the gradient value to perturb the agent.

If A and B are satisfied, then the agent is trapped
in a loop of moving backwards and forwards, os-

cillating around what is in these circumstances a
lower-dimensionality local minimum. This lower-
dimensionality minimum can be present even in tradi-
tionally ‘local-minimum-free’ fields, as it is not associ-
ated with a local minimum in the space of the entire
surface.

Figure 1 demonstrates that such local minima can be
found hidden within a 1-D subspace of the original 2-D
map. The minimum is hence within a 2-D subspace of
the original potential field’s 3-D space. We call this hid-
den local minimum problem the saddle minimum prob-
lem.

It can be seen that if the agent were moving impre-
cisely across the field, or if the mathematical represen-
tation of the potential field was imperfect, then the re-
sulting tiny deviation from the subspace that would be
caused would be sufficient to ensure the agent was not
trapped in this 2-D saddle minimum. It would instead
safely slide down one side of the saddle point and then
away from the dangerous area.

The phenomenon described here is not the same
as that of stagnation, where the field around a sad-
dle point (or group of saddle points) can have such a
slight gradient that an agent moving at a rate propor-
tional to the strength of the local gradient proceeds
to navigate only very slowly. Connolly points out in
(Connolly and Grupen, 1992) that the properties of sad-
dle points in creating flat, slow-progress regions as trou-
blesome, and recommends the use of high precision cal-
culations to deal with the problem of flat regions on har-
monic fields. Unfortunately, this recommendation could
potentially increase the possibility of saddle minimum
problems - see requirement B above. In the case when a
saddle point minimum is present and affects the agent,
they halt further progress completely by causing oscilla-
tion, rather than merely slowing down progress.

It is also important to notice that we are not
merely suggesting saddle point positions are a prob-
lem; this observation has been made in potential field
research already, albeit briefly. Connolly observes in
(Connolly et al., 1990) that using a saddle point as a
starting point for steepest descent based navigation on
a harmonic potential field will result in failure, and rec-
ommends using some other local search technique to find
an escape route from such positions. On fields possess-
ing saddle minima as described in this paper, a starting
point anywhere on the subspace will result in failure in
certain descent regimes - so an entire axis of a problem
space can be dangerous, not just the saddle point posi-
tion itself.

We are suggesting the following novel observations:

e Saddle points on navigational potential fields can be
prone to the saddle minimum problem.

e When the problem is present, an entire lower-
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Figure 2: One goal, one obstacle navigation. This potential
field contains a single goal G at (—4,0) and a single circular
obstacle centered on (0, 0). The starting position S is at (4, 0).
P is a saddle point minimum.

dimensional subspace slice of a navigational field is
dangerous, not just the saddle point itself, as the sub-
space contains what is effectively a full-blown local
minimum.

e It is plausible that travel may be accidentally or de-
liberately constrained to this dangerous subspace of
the field, e.g. by choice of starting location and de-
scent heuristic.

e Techniques that aim to detect local minima are un-
likely to be aware of this type of hidden local min-
imum, and may be susceptible to such. Techniques
that expect no local minima to be present at all may
be equally confounded.

3. Examples

The following examples are given to demonstrate how
easily the saddle minimum problem can occur in a poten-
tial field. Any larger environment containing a situation
resembling these example problems as a subproblem may
well contain the saddle minimum problem as a result.

3.1 Simple 1-Goal Robotic Navigation.

Consider a robot starting at S (4,0), and attempting to
navigate to G (—4,0), with an obstacle at (0,0). This
is shown in Figure 2. The equation for this field is
P(z,y) = f(z,y)+g(x,y), where f and g are the obsta-
cle and goal functions respectively!.

The potential field as a whole is local-minimum-free.
It does not contain any local minima, and there is only
a single saddle point in front of the obstacle. The fact
that this saddle point position would not normally be

I The obstacle’s function is f(z,y) = B/((x—0z)%+(y—O0y)?),
and the goal’s function is g(x,y) = Ax(z—Gz)%+(y—Gy)2. Values
of A=1,B =80,Gxr = —4,Gy = 0,0z = 0,0y = 0 were used
here.

considered as a local minimum can be observed by not-
ing that the arrows at most positions around the saddle
point (marked P) do not direct the agent back towards
P - rather they direct the agent away from P.

Looking along the entire y = 0 axis however, we can
see that the steepest gradient never has any component
along the y axis. In other words, an agent following the
gradient accurately, once placed on this axis, might as
well have been placed on a 1-D potential field consisting
only of the y = 0 axis. The rest of the potential field has
become completely inaccessible because of the combina-
tion of starting location, descent heuristic and the shape
of the potential field.

3.2 A Historical Problem - Simple 2-Goal Nav-

1gation.

Buridan, a 14th Century French philosopher interested
in free-will, was unfortunate enough to have a philosoph-
ical problem embarrassingly named after him by his crit-
ics - ‘Buridan’s Ass’. The problem consists consists of a
completely rational ass (donkey) that is placed at a mid-
point between two equally desirable and accessible bales
of hay. As both bales of hay are equally attractive, the
unfortunate ass proceeds to starve to death, as it cannot
rationally pick one bale rather than the other as being
best to start moving towards towards.

As well as presenting an excellent metaphor for the
theoretical difficulty of solving symmetric problems with
deterministic computation, by extending ‘Buridan’s Ass’
we can have an excellent intuitive model of a situation
where an agent will fail to navigate after being presented
with a potential field with a saddle point and no local
minima. Consider an ass that is placed some distance
from two bales of hay - and is positioned directly between
the two bales of hay as shown in Figure 3. Each bale of
hay acts as an attractor for the ass.

The ass will initially move forwards, as this improves
its ability to reach either bale of hay. However, it is under
no pressure to make a movement preferentially to either
side, as the attraction of each bale is balanced by the
other bale. Eventually it will reach a point where mov-
ing either forwards or backwards will cause the ass to be
further away from the bales. Since there is no reason for
it to preferentially move towards the left bale of hay, or
the right bale of hay, and since it cannot move forwards
or backwards except perhaps by a single step, the ass
will stop at (or oscillate around) this point and starve to
death. This location in the environment is an example of
a saddle point minimum - a local minimum, hidden in a
lower-dimensionality subspace of the environment. The
ass is confined to this subspace by an unfortunate com-
bination of potential field, starting position and descent
heuristic.

A real world agent (such as a robot or an ass) that
navigates itself towards a saddle minimum will find it-
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Figure 3: Two alternative goals navigation problem. If bale
A and bale B act as attractors for a simulated donkey, it will
walk towards both bales of hay simultaneously by travelling
towards point M, improving its proximity to each bale by
doing so. At point M (a saddle minimum), it can no longer
make progress, and since it has no reason to prefer moving
towards bale A or bale B, the gradient leaves it trapped, os-
cillating unhappily in the 1-D hidden local minimum problem
in the axis containing the donkey and the midpoint.

self very slightly on one side of the saddle minimum or
the other, and thus will be able to continue navigation
despite saddle minima. The ‘fuzziness’ of the real world
ensures that the agent is never trapped perfectly within
the lower-dimensionality subspace.

In philosophical debates (or computer simulations)
however, it is quite easy for the agent to carry out nav-
igation entirely within an infinitely thin 1-D slice of the
world, and thus the agent will find itself trapped in a
local minimum problem in its travel subspace, despite
the apparent absence of any local minima in the space
of the whole environment.

It can be observed that the potential field the agent
can potentially travel on is different to the lower-
dimensionality potential field that the agent actually
travels on.

3.3 Possible Objections

This section considers some responses objecting to the
requirements necessary for the saddle minimum problem
to exist. The foci of this paper are experimental simu-
lation of robotic navigation heuristics, and transferral of
robotic navigation heuristics to virtual world problem
domains. Accordingly, corresponding responses to each
objection are given.

3.3.1 “Requirement A) is unlikely. The agent

15 unlikely to ever intersect perfectly with
the subspace.”

In experimental simulation, the most likely cause of the
simulated robot landing perfectly on the problem sub-
space is if the robot is placed there directly by a hu-
man favouring an elegant-looking, symmetric problem

design. Examples 1 and 2 are perfect demonstrations of
this occuring. Without knowing anything about saddle
minima, an obvious test environment for a navigation
heuristic is a single goal, and a single circular or point
obstacle directly in the way. For 2-goal navigation, plac-
ing the robot somewhere between the two goals it has a
choice of navigating towards is also an ‘intuitive’ choice.

Similarly, in the case of virtual world agent navi-
gation, it is possible to envisage a scenario whereby
computer-controlled monsters are initially placed di-
rectly behind an obstacle so as to not disruptively emerge
from nowhere in front of a computer game player.

In both simulation and virtual world situations, con-
sider what might happen if the environment is repre-
sented by a grid rather than a continuous environment,
where the potential and gradient for a whole grid square
is chosen according to a sampled point. If the grid sam-
pling points happen to lie on the problem subspace, then
the effective ‘problematic subspace’ might be extended
to become an entire area on the potential field rather
than just a line - and intersection with the subspace dur-
ing travel becomes a serious possibility.

3.3.2  “Requirement B) is unlikely. No agent

can follow the gradient perfectly.”

This depends upon the accuracy of the simulation. In
the physical world, it is almost impossible to believe that
a robot could travel down this infinitely thin fragment
of the environment.

In simulation though, it is possible that this could oc-
cur. A floating point real number representation of the
environment, and the positions and gradients within it
could well introduce sufficient ‘fuzziness’ to ensure that
an agent does not stay within the subspace. On the
other hand it is equally possible (if the simulation is im-
plemented in a mathematical environment such as Maple
or Matlab) that the position of the agent may be tracked
with perfect precision by the system’s perfect accuracy
(non-floating-point) real number representation.

In a virtual world, it might seem far less likely that a
perfectly accurate number system will be used. Most vir-
tual scenarios aim for speed of simulation, and it seems
unlikely that an environment such as Maple or Matlab
might be used.

It seems possible though that in both scenarios (sim-
ulation and virtual world), the number zero might be
accurately represented by most systems, and if this is
the case then it is quite possible in problem situations
such as the two examples in this paper, where the prob-
lem subspace lies along the z or y axis, that the agent
will never gain a position or gradient component with a
magnitude other than zero. The robot or virtual agent
will thus be completely vulnerable to saddle minima.

Lastly, an environment with a grid representation sim-
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Figure 4: X axis cross sections of the grooved saddle mini-
mum g(, y).

ilar to that detailed in the rebuttal of objection 1 might
well make it very easy for a simulated robot or virtual
world agent to be kept ‘on track’ even in the event of
small floating point errors - i.e. if the gradient is being
calculated from the current co-ordinate cell’s midpoint,
and the cell’s midpoint lies on the problematic subspace.

3.4 Increasing the Threat: Grooved Saddle

Minima

Finally, to address any remaining concerns of those still
skeptical about the chances of running into this threat,
we note a situation under which the danger posed by
saddle minima significantly increases. This further vari-
ation on the core problem allows the threat area of a
saddle minimum to be of the same dimensionality as the
problem environment.

Referring back to Figure 1, let the surface function be
g(x,y), with the saddle point at (0,0) and the marked
U-shaped ridge running along the y-axis. Imagine now
that this ridge is in fact a groove, or runnel, tapering
to zero width at the origin. Thus, an z-direction cross
section of the ridge at some y # 0 has the form shown
in Figure 4(a) while the cross section at y = 0 has the
form shown in Figure 4(b).

A specific example is furnished by the surface g(z, y) =
—(1/4)z* + y?((1/2)2? + 1), a cross section of which has
stationary points at y,-y and 0. Figure 5 shows this
function.

Any starting point within either side of the groove
will lead to the saddle point, and any overshoot past the
saddle point can lead into the corresponding groove on
the other side of the saddle point. The threat area of the
saddle minimum now has the same dimensionality as the
search space itself and continues to have a mathematical
identity that is quite distinct from a traditional local
minimum.

4. Consequences

The authors suspect the consequences of the saddle min-
imum problem (and grooved saddle minimum) will be
generally minor compared with the more common LMP.
In a few experiments with simple cases of navigation, the
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Figure 5: 3-D plot of the grooved saddle minimum g(z,y).

agent or simulated robot will not succeed. These cases
will be of the most consequence when e.g. a navigation
heuristic is found to have ‘mysteriously’ failed in exactly
one case in 100 trials from different starting positions.
The problem is less serious in the case of video game
or cinematic virtual worlds, where small glitches are less
likely to occur than in simulated robotic experiments
(due to low precision calculations), and more likely to
be tolerated if they occur.

Inverse kinematics problems involving high dimen-
sional configuration spaces are one experimental field of
robotics where the saddle minimum problem may be of
consequence. Consider the situation of some potential
field heuristic being used to navigate a simulated robotic
arm between positions in the configuration space of, say,
a nine joint-angle effector. The 9-D space in which nav-
igation is occuring is far more difficult to visualise than
that of a 2-D environment, and it seems reasonable to
suggest that if a saddle minimum is being encountered
and causing navigation towards a configuration to fail,
it would not be spotted so easily as it would be in a 2-D
or 3-D scenario.

It also seems reasonable to consider that such a sim-
ulated effector may start off with some joint angles set
at ‘zero’. The possibility of initially zeroed variables in-
creases the chance of perfect representation of position
and gradient (see Rebuttal 2 in the previous section),
and thus increases the chance of saddle minimum re-
quirement B being fulfilled and hence the chance of the
problem occuring.

It is also possible that even with imperfect position
and gradient representation, a simulated or virtual world
agent taking large fixed-size steps over the field will ex-
pend most of its efforts upon oscillating around a saddle
minimum position and only gradually moving down the
side of the saddle, slowing travel considerably. Slowing
of progress is not a concern in this paper, however - only
the progress-halting behaviour of this hidden analogue
to the traditional LMP.

Finally, the authors note that the saddle minimum



problem may affect both traditional and harmonic po-
tential field models (e.g. f(x,y) = 22 — y? satisfies the
Laplace equation). The grooved saddle minimum prob-
lem could only occur in non-harmonic modellings, as the
Laplace equation would prohibit a groove shape from
narrowing into a saddle point in this way.

5. Possible Solutions

e Introduce noise. Suggested in the field of robotics in
(Latombe, 1991), this solution is an excellent way of
overcoming many problems caused by saddle points.
Random or pseudo-random perturbations can be in-
troduced to the position or gradient information
to ensure that travel is not restricted to a lower-
dimensional subspace, as would be possible with ac-
curate position and gradient information. This solu-
tion removes the main threat of the saddle minimum
problem - if implemented.

e Improve LM checking. Techniques that aim to over-
come local minima by detecting them and either
avoiding them, or backtracking from them, can add
additional tests to check for saddle minima, if there
is a chance they might pose a particular problem for
some sets of experiments.

e FEnvironment design. Picking non-symmetric envi-
ronments in robotic simulation allows simulated ex-
perimental conditions to more closely resemble those
in the real world, where perfect symmetry on a
macro-scale is impossible to find. The saddle min-
imum problem, as an artefact entirely due to simula-
tion, is a reminder of the usefulness of Brooks’ sugges-
tion to test and develop robotics techniques using real
world robots (Brooks, 1991). Using computer gener-
ated scenarios and avoiding human-picked scenarios
where possible may lead to less problem-causing sym-
metry occuring in experimental setups.

e Awvoid steepest descent. Another alternative is to
select a better descent heuristic than steepest gra-
dient descent. An underlying problem is that
whenever local minima can occur, gradient descent
can fail. Some alternative techniques for poten-
tial surface travel are less vulnerable to local min-
ima and can be used instead: (Zou and Zhu, 2003)
(Bell and Weir, 2004).

6. Conclusions.

This paper has demonstrated a type of local minimum
problem that can occur on surfaces that are tradition-
ally considered local-minimum-free. These saddle min-
ima may not currently be recognised by techniques that
analyse the local potential field surface to check for local

minima. This problem may be of consequence to re-
searchers and students developing potential field naviga-
tion heuristics in simulation, or to virtual world designers
seeking to re-apply techniques from robotics for virtual
world navigation.

Awareness of this problem is useful for those work-
ing in potential field based navigation in simulated envi-
ronments and particularly in highly-dimensional spaces,
where the saddle minimum problem may occur in a man-
ner that is extremely difficult to visualise. To overcome
the saddle minimum problem, the authors advocate in-
troducing a small amount of random noise to all move-
ment calculations, to remove the symmetry and perfec-
tion from the environment that allows the saddle mini-
mum problem to occur.
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